MATH 512 HOMEWORK 1

Due Monday, Feb 14.

Recall that $I \subset \mathcal{P}(\kappa)$ is an *ideal* if $A \subset B$ and $B \in I$ implies $A \in I$; and if A, B are in I, then so is $A \cap B$. Given an ideal I, the dual filter is $F = \{A \subset \kappa \mid \kappa \setminus A \in I\}$. For example, the club filter on κ is the dual filter to the nonstationary ideal on κ .

I is normal if for all $S \subset \kappa$, $S \notin I$, and $f : S \to \kappa$ with $f(\alpha) \in \alpha$ for all $\alpha \in S$, we have that there is $T \subset S$, $T \notin I$, such that f is constant on T.

Problem 1. Show that I is normal if and only if the dual filter is closed under diagonal intersections.

Problem 2. Suppose that U is a κ -complete normal ultrafilter on κ . Show that U contains all clubs of κ , and that every set in U is stationary.

Problem 3. Suppose that κ is supercompact and GCH holds below κ . (I. e. $\tau < \kappa \rightarrow 2^{\tau} = \tau^+$.) Show that GCH holds everywhere i.e. for all cardinals λ , $2^{\lambda} = \lambda^+$.

For the problems below, let $\kappa < \lambda$ be regular cardinals and $\mathcal{P}_{\kappa}(\lambda) = \{x \subset \lambda \mid |x| < \kappa\}$. A set $A \subset \mathcal{P}_{\kappa}(\lambda)$ is club if:

- (unbounded) for all $x \in \mathcal{P}_{\kappa}(\lambda)$, there is $y \in A$ with $x \subset y$;
- (closed) for all $\alpha < \kappa$ and $x_0 \subset x_1 \subset ..., \xi < \alpha$ of elements in $A, \bigcup_{\xi < \alpha} x_{\xi} \in A$.

Problem 4. Let κ be a regular uncountable cardinal and $\kappa < \lambda$. Show that if $\langle A_{\alpha} \mid \alpha < \lambda \rangle$ are clubs in $\mathcal{P}_{\kappa}(\lambda)$, then so is $\triangle_{\alpha}A_{\alpha} = \{x \in \mathcal{P}_{\kappa}(\lambda) \mid x \in \bigcap_{\alpha \in x} A_{\alpha}\}.$

Problem 5. Let $\kappa < \lambda$ be uncountable cardinals.

- (1) Show that $A = \{x \in \mathcal{P}_{\kappa}(\lambda) \mid \kappa \cap x \in \kappa\}$ is club in $\mathcal{P}_{\kappa}(\lambda)$. For every $x \in A$, denote $\kappa_x := x \cap \kappa$.
- (2) Suppose that C is a club in $\mathcal{P}_{\kappa}(\lambda)$, such that $C \subset A$, where A is the set above. Show that $\{\kappa_x \mid x \in C\}$ is club in κ .

Recall that $\langle C_{\alpha} \mid \alpha \in \operatorname{Lim}(\kappa^+) \rangle$ is a \Box_{κ} sequence iff:

- (1) each C_{α} is a club subset of α ,
- (2) for each α , if $cf(\alpha) < \kappa$, then $o.t.(C_{\alpha}) < \kappa$,
- (3) for each α , if $\beta \in \text{Lim}(C_{\alpha})$, then $C_{\alpha} \cap \beta = C_{\beta}$.

Problem 6. Suppose that $\langle C_{\alpha} | \alpha \in Lim(\kappa^+) \rangle$ is a \Box_{κ} sequence. Show that there is no club $C \subset \kappa$ such that for all $\alpha, C \cap \alpha = C_{\alpha}$.

Hint: look at the order type of initial segments of such a C.

Problem 7. Suppose that $\langle C_{\alpha} \mid \alpha \in Lim(\kappa^+) \rangle$ is a \Box_{κ} sequence. Show that reflection at κ^+ fails. Hint: look at the function $\alpha \mapsto o.t.(C_{\alpha})$.