MATH 512 HOMEWORK 1

Due Monday, Feb 14.
Recall that $I \subset \mathcal{P}(\kappa)$ is an ideal if $A \subset B$ and $B \in I$ implies $A \in I$; and if A, B are in I, then so is $A \cap B$. Given an ideal I, the dual filter is $F=\{A \subset \kappa \mid \kappa \backslash A \in I\}$. For example, the club filter on κ is the dual filter to the nonstationary ideal on κ.
I is normal if for all $S \subset \kappa, S \notin I$, and $f: S \rightarrow \kappa$ with $f(\alpha) \in \alpha$ for all $\alpha \in S$, we have that there is $T \subset S, T \notin I$, such that f is constant on T.

Problem 1. Show that I is normal if and only if the dual filter is closed under diagonal intersections.

Problem 2. Suppose that U is a κ-complete normal ultrafilter on κ. Show that U contains all clubs of κ, and that every set in U is stationary.

Problem 3. Suppose that κ is supercompact and GCH holds below к. (I. e. $\tau<\kappa \rightarrow 2^{\tau}=\tau^{+}$.) Show that GCH holds everywhere i.e. for all cardinals $\lambda, 2^{\lambda}=\lambda^{+}$.

For the problems below, let $\kappa<\lambda$ be regular cardinals and $\mathcal{P}_{\kappa}(\lambda)=\{x \subset$ $\lambda||x|<\kappa\}$. A set $A \subset \mathcal{P}_{\kappa}(\lambda)$ is club if:

- (unbounded) for all $x \in \mathcal{P}_{\kappa}(\lambda)$, there is $y \in A$ with $x \subset y$;
- (closed) for all $\alpha<\kappa$ and $x_{0} \subset x_{1} \subset \ldots x_{\xi} \subset \ldots, \xi<\alpha$ of elements in $A, \bigcup_{\xi<\alpha} x_{\xi} \in A$.
Problem 4. Let κ be a regular uncountable cardinal and $\kappa<\lambda$. Show that if $\left\langle A_{\alpha} \mid \alpha<\lambda\right\rangle$ are clubs in $\mathcal{P}_{\kappa}(\lambda)$, then so is $\triangle_{\alpha} A_{\alpha}=\left\{x \in \mathcal{P}_{\kappa}(\lambda) \mid x \in\right.$ $\left.\bigcap_{\alpha \in x} A_{\alpha}\right\}$.
Problem 5. Let $\kappa<\lambda$ be uncountable cardinals.
(1) Show that $A=\left\{x \in \mathcal{P}_{\kappa}(\lambda) \mid \kappa \cap x \in \kappa\right\}$ is club in $\mathcal{P}_{\kappa}(\lambda)$. For every $x \in A$, denote $\kappa_{x}:=x \cap \kappa$.
(2) Suppose that C is a club in $\mathcal{P}_{\kappa}(\lambda)$, such that $C \subset A$, where A is the set above. Show that $\left\{\kappa_{x} \mid x \in C\right\}$ is club in κ.

Recall that $\left\langle C_{\alpha} \mid \alpha \in \operatorname{Lim}\left(\kappa^{+}\right)\right\rangle$is a \square_{κ} sequence iff:
(1) each C_{α} is a club subset of α,
(2) for each α, if $\operatorname{cf}(\alpha)<\kappa$, then o.t. $\left(C_{\alpha}\right)<\kappa$,
(3) for each α, if $\beta \in \operatorname{Lim}\left(C_{\alpha}\right)$, then $C_{\alpha} \cap \beta=C_{\beta}$.

Problem 6. Suppose that $\left\langle C_{\alpha} \mid \alpha \in \operatorname{Lim}\left(\kappa^{+}\right)\right\rangle$is $a \square_{\kappa}$ sequence. Show that there is no club $C \subset \kappa$ such that for all $\alpha, C \cap \alpha=C_{\alpha}$.

Hint: look at the order type of initial segments of such a C.

Problem 7. Suppose that $\left\langle C_{\alpha} \mid \alpha \in \operatorname{Lim}\left(\kappa^{+}\right)\right\rangle$is $a \square_{\kappa}$ sequence. Show that reflection at κ^{+}fails.

Hint: look at the function $\alpha \mapsto$ o.t. $\left(C_{\alpha}\right)$.

